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Abstract

The electrode kinetics of anomalous codeposition of iron group metals is interpreted by queuing theory applied to
the recently proposed Zech±Podlaha±Landolt model which postulates an adsorbed mixed±metal species existing
temporarily as an electrochemically activated complex. The complex acts as an intermediate in a consecutive
reaction leading to enhanced deposition of the more electronegative metal. Numerical illustrations for the
codeposition of iron and nickel, and cobalt and nickel from a sulphate electrolyte are provided.

1. Introduction

The anomalous codeposition of iron group metals, and
especially the inhibition of Ni deposition in the presence
of Fe, has been the subject of analysis since the sixties;
various mechanisms involving surface adsorption as well
as electrode processes have recently been discussed by
Pritzker [1, 2] and Zech et al. [3, 4]. The model presented
by the latter is a modi®cation of two parallel single
metal depositions in two consecutive steps proposed by
Matlosz [5]. The Zech±Podlaha±Landolt model assumes
the temporary formation of a mixed-metal adsorbate on
the electrode surface followed by its decomposition
according to the scheme:

M1�II� �M2�II� � eÿ ! �M1M2�III��ads �1�

�M1M2�III��ads � eÿ !M1�II� �M2�s� �2�
In these steps a preferential deposition of metal M2 is
postulated in addition to single ion deposition paths
formulated by Matlosz. Numerical simulations per-
formed by Zech et al. [4] compare at least semi-
quantitatively with experimental determinations [3] of
metal deposition parameters. However, model predic-
tions are strongly linked to the numerical values of
deposition parameters, hence ``practical application for
the quantitative prediction of alloy composition is
limited due to uncertainties in the prevailing electrode

List of symbols

b Tafel parameter (Vÿ1)
ci concentration of species i ( mol cmÿ3)
E electrode potential ( V )
Iq�z� modi®ed Bessel function of the ®rst kind of order

q, argument z
L expected number of individuals in the system
Lq expected number of individuals in the line
N upper limit of the number of individuals
NA Avogadro's number (6.028� 1023 ion molÿ1)
Ni ion ¯ux of species i (ion cmÿ2 sÿ1)
n number of individuals
k01 speci®c electrode reaction rate constant

(Equation 1; cm4 molÿ1 sÿ1)
k02 speci®c electrode reaction rate constant

(Equation 2; mol cmÿ2 sÿ1)
Pn�t� probability of n individuals present at time t

pn equilibrium probability of n individuals present
V variance of the number of individuals present
Wq mean waiting time in the line ( fs or as )

Greek symbols
h1 surface coverage of adsorbed metal species 1
h2 surface coverage of adsorbed metal species 2
hz surface coverage of an adsorbed mixed ± metal

species
k arrival rate ( fsÿ1 or asÿ1)
l service rate ( fsÿ1 or asÿ1)
q tra�c density

Acronyms
EAC electrochemically activated complex (Equations 1

and 2)
MSE mercury sulphate electrode
SHE standard hydrogen electrode
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reaction mechanisms'' [4]. These caveats notwithstand-
ing, the supposition of a mixed-metal adsorbate inter-
mediate widens the horizon of the anomalous
codeposition problem in terms of the electrochemically
activated complex (EAC) inherent in the new kinetic
model.
The purpose of this paper is to characterize the path of

the EAC via queuing theory, whose application to
certain anodic dissolution phenomena has recently been
demonstrated [6, 7]. In this framework, arrival is the
queuing-theory equivalent of the electrode process in
Equation 1, and service is the equivalent of the electrode
process in Equation 2. The speci®c rates k1 and k2 (k31
and k32 in [4]) are employed in the computation of arrival
and service rates, respectively, which are the fundamen-
tal parameters of a queuing process. Using its conven-
tional terminology, the `system' is de®ned as the overall
process involving the formation and decomposition of
the EAC, and the `line' is de®ned as the species at the
electrode surface ready to form the EAC. Queuing
theory is used to predict the expected number in the
system, its variance, the expected number in the line, the
average waiting time in the line, and various probabilities
related to the existence of species in the system at a given
time, or at steady state. The compatibility of queuing
theory concepts with electrode processes was indicated in
an earlier seminal work in electrochemistry [8].
Queuing processes of the kind can be classi®ed into

the immigration ± emigration class category of linear
birth ± death processes [9]. If the probability distribution
of arrival (`birth') and service (`death') are known, the
rates are determined by statistical parameters of these
distributions. In the sequel, the arrival distribution is
considered to be poissonian, that is, that EAC forma-
tion is independent, within a certain time interval, of the
interval itself. The service time distribution is considered
to be exponential. Justi®cation for the poissonian
arrival/exponential service time model is provided in a
previous paper [6], emphasizing cross-fertilization of
di�erent principles.

2. Summary of pertinent queuing theory

The concepts and nomenclature follow closely Sections
2.5a, 2.5b and 4.2 of Saaty [10]. Let Pn�t� be the
probability that there are n individuals (or items) in the
system at time instant t, given that there were i
individuals (or items) in it at zero time (t = 0 is the
starting instant of the queuing process). The temporal
variation of this probability is given by the di�erential
equation set

dPn

dt
� ÿ�k� l�Pn�t� � kPnÿ1�t� � lPn�1�t�

where n � 1 �3�

dP0

dt
� ÿkP0�t� � lP1�t� �4�

where k and l are the constant rates of arrival and
service, respectively. The ratio q � k=l is called the
tra�c density. If the ratio is unity, there is no queue,
since arrival and service are exactly matched. If the ratio
is larger than unity, the queue is in®nite. The solution of
Equations 3 and 4 are

Pn�t� � exp�ÿ�k� l�t�
"
�l=k��iÿn�=2Inÿi�2t

p
kl�

� �l=k��iÿn�1�=2In�1�i�2t
p

kl�

� �1ÿ q��qn�
X1

k�n�i�2
�l=k�k=2Ik�2t

p
kl�
#
�5�

in terms of modi®ed Bessel functions of the ®rst kind.
The related expression

X1
n�j

Pn�t� � �expÿ�k� l�t�
X1

n�jÿi

qn=2 � In�2t
p

kl�
"

�
X1

n�j�1�i

�l=k��nÿ2j�=2In�2t
p

kl�
#

�6�

yields the probability that the number of individuals (or
items) in the system is not less than j at a given time
instant t, if there were i individuals (or items) in it at zero
time. If the tra�c density is less than unity, a steady-
state queue is eventually established, and Equations 3
and 4 yield the algebraic equation set

�k� l�pn � kpnÿ1 � lp1 where n � 1 �7�

kp0 � lp1 �8�

where pn � lim Pn�t� as t!1. Recursive solution of
Equations 7 and 8 yields the geometric probability
distribution p0 � 1ÿ q and pn � qn�1ÿ q�. The follow-
ing steady state queue characteristics are of particular
interest for the subject matter of this paper.
Expected number of individuals/items in the system:

L �
X1
n�0

npn � q=�1ÿ q� �9�

with variance

V �
X1
n�0
�nÿ L�2pn � L� L2 �10�

Expected number of individuals/items in the line:

Lq �
X1
n�0
�nÿ 1�pn � q2�1ÿ q� �11�

Expected length of waiting time in the line:

Wq � Lq=k �12�
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In many practical applications the summations above
are terminated at a su�ciently large integer N <1,
whose value is prescribed such that for all n > N ; pN is
vanishingly small.

3. Application to the electrolytic deposition
of Fe±Ni and Co±Ni from sulphate solutions:
a numerical illustration

Table 1 contains pertinent quantities for the establish-
ment of the fundamental parameters k and l. The
species ¯ux was computed using Table 1 in [4], as

N1 � NAk01c1c2�1ÿ h1 ÿ h2 ÿ hz�2 exp�ÿb1E� �13�

and

N2 � NAk02hz exp�ÿb2E� �14�

The time scale was chosen to match the queue to a small
number of species participating in the process, that is,
1 fs � 10ÿ15 s for the ®rst illustrative case, and 0.1 fs for
the second illustrative case.
Transient probabilities of ®nding stated numbers of

the EAC at selected times are shown in Tables 2 and 3.
The entries were conveniently computed via Equation 6
with N = 9 providing adequate accuracy, then by the
relationships

P0 � 1ÿ
X9
n�1

Pn �15a�

P1 �
X9
n�1

Pn ÿ
X9
n�2

Pn �15b�

P2 �
X9
n�2

Pn ÿ
X9
n�3

Pn �15c�

The numerical values of the modi®ed Bessel functions
were obtained from conventional tabulations [11, 12].

4. Discussion

The foregoing results indicate that queuing theory
predicts a time horizon of 0.1±300 as for the passage
of Fe(II) and Ni(II) ions, and of 1±1000 as for the
passage of Co(II) and Ni(II) ions through the interme-
diate adsorbate complex to the ®nal surface state, in the
two speci®c numerical illustrations. The time horizon is
a function of surface coverage (i.e., electrode potential),
electrolyte composition and concentration, and elec-
trode kinetic (Tafel) parameters. These parameters are
`compressed' by queuing theory into the arrival and
service rate, hence the traf®c density. The numerical
values of the latter are not appreciably different, but the
arrival and service rates themselves differ noticeably
from the Fe±Ni to the Co±Ni system. These differences
are re¯ected by the numerical values of the transient
probabilities (Tables 2 and 3) and the steady-state queue
properties (Table 4).
One particular e�ect of the tra�c density is demon-

strated by the steady-state probability distributions. In
the Co±Ni case, with a tra�c density about 1.1 times
higher than in the Fe±Ni case, the probability of ®nding
no species passing through the process represented by
Equation 1 decreases by about 13%, but the probability
of one or two transitions is not a�ected noticeably

Table 1. Numerical values of parameters in the Fe±Ni and the Co±Ni

deposition process selected for illustration

Parameter and unit Illustration 1 (Fe±Ni) Illustration 2 (Co±Ni)

*E(NSE)/V )1.4 )1.35
àE(SHE)/V )0.784 )0.734
 (h1+h2) 0.0029 0.40
*hz 0.96 0.58
 c1c2/(mol cm)3)2 4 � 10)9 5 � 10)9

*k01 /cm
4 mol)1 s)1 4 � 10)4 4 � 10)5

*k02 /mol cm)2 s)1 4 � 10)15 4 � 10)14

*b1, b2/V
)1 19 19

àN1/ion cm)2 s)1 3.906 � 1015 1.005 � 1016

àN2/ion cm)2 s)1 6.814 � 1015 1.599 � 1016

às, time frame for the

queuing process/fs

1 0.1

àk s)1 3.906 1.005
àl s)1 6.814 1.599
àq 0.573 0.628

* data in [4]
  assumed
à computed from data in [4]

Table 2. Transient probabilities of ®nding X number of EAC in the

queue at selected times, with parameters in Illustration 1* (Fe±Ni)

Time/fs X = 0; P0 (t) X = 1; P1 (t) X = 2; P2 (t) Pr [X > 2]

0 1 0 0 0

0.1 0.758 0.204 0.0338 0.0042

0.3 0.595 0.271 0.0979 0.0361

0.5 0.533 0.268 0.168 0.0310

0.7 0.501 0.262 0.133 0.104

1.0 0.485 0.257 0.136 0.122

1  0.427 0.245 0.140 0.188

* assuming no species at zero time (i.e. immediately prior to the onset

of the deposition) process
  computed as pn � qn�1ÿ q�; q � 0:573

Table 3. Transient probabilities of ®nding X number of EAC in the

queue at selected times, with parameters in Illustration 2* (Co±Ni)

Time/0.1 fs X = 0; P0 (t) X = 1; P1 (t) X = 2; P2 (t) Pr [X > 2]

0 1 0 0 0

0.1 0.926 0.0712 2.7 � 10)3 1.3 � 10)4

0.3 0.779 0.191 0.0270 3.3 � 10)3

0.5 0.718 0.176 0.0460 0.0598

0.7 0.647 0.263 0.0730 0.0173

1.0 0.589 0.278 0.0980 0.0346

1  0.372 0.234 0.147 0.247

* assuming no species present at zero time (i.e. immediately prior to

the onset of the electrode process)
  computed as pn = qn(1 ) q); q = 0.628
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(about 4% when X � 1, and about 5% when X = 2).
The ®nding that Pr [XP2] is about 20% larger in the
Co±Ni case is probably due to the higher service rate
associated with the Fe±Ni system, ensuring a somewhat
more e�cient `no congestion' conditions for passage
through the intermediate adsorbate complex state.
Some comments are in order with respect to the

assumption of an exponential service time (i.e., EAC
decomposition time) distribution. As discussed in [6],
this assumption is equivalent to the assumption that the
electrode surface behaves as a Markovian process
generator [13]. Given the importance of Markov pro-
cesses in the modern interpretation of natural phenom-
ena (e.g., [14±16]), this is a plausible assumption,
especially in view of our limited understanding of the
anomalous nature of iron alloy deposition. Were
the experimental distribution of EAC lifetime known,
the variance of the distribution could be used via the
important Pollaczek±Khintchine theorem [7, 10] to
estimate the expected number of species in the queue,
and the mean value of waiting time in it. In other words,
no postulate of a (theoretical) service time distribution
would be needed.

5. Final remarks

The queuing theory model employed in this paper
considers the electrode surface as a `single queue server',
and does not discriminate between individual active
centres on the surface. Thus, it is immaterial in this

context, whether a single queue, or a large number of
identical parallel queues are postulated. Tenets of
queuing theory, capable of dealing with parallel queues
of di�erent tra�c densities etc., would not be of much
use, unless the distribution of surface activity along an
electrode are known. This aspect is well beyond the
scope of the current subject matter.

Acknowledgement

This research has been supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

References

1. T. Krause, L. Arulnayagam and M. Pritzker, J. Electrochem. Soc.

144 (1997) 960.

2. H. Schultz and M. Pritzker, J. Electrochem. Soc. 145 (1998) 2033.

3. N. Zech, E.J. Podlaha and D. Landolt, J. Electrochem. Soc. 146

(1999) 2886.

4. N. Zech, E.J. Podlaha and D. Landolt, J. Electrochem. Soc. 146

(1999) 2892.

5. M. Matlosz, J. Electrochem. Soc. 140 (1993) 2272.

6. T.Z. Fahidy, J. Appl. Electrochem. 28 (1998) 411.

7. T.Z. Fahidy, J. Appl. Electrochem. 29 (1999) 1125.

8. J.O'M. Bockris and A.N. Reddy, `Modern Electrochemistry'

(Plenum Press, New York, 1967), section 9.1.2., pp. 992±3.

9. D.R. Cox and H.D. Miller, `The Theory of Stochastic Processes'

(Chapman & Hall, London, 1970), chapter 4, pp. 146±202.

10. T.L. Saaty, `Elements of Queuing Theory with Applications'

(Dover, New York, 1961), chapter 2, pp. 26±53; chapter 4,

pp. 83±134.

11. E. Jahnke and F. Emde, `Tables of Functions' (Dover, New York,

1945), pp. 232±3.

12. M. Abramowitz and I.A. Stegun, `Handbook of Mathematical

Functions' (Dover, New York, 1970), Table 9.8, pp. 416±23.

13. Y.A. Rozanov, `Probability Theory: A Concise Course' (Dover,

New York, 1977) chapter 8, pp. 102±14.

14. L.J. Goldstein and D.I. Schneider, `Finite Mathematics and Its

Applications', 2nd edn (Prentice Hall, Englewood Cli�s, NJ, 1984),

chapter 8, pp. 329±60.

15. H. Stark and J.W. Woods, `Probability, Random processes and

Estimation Theory for Engineers' (Prentice Hall, Englewood Cli�s,

NJ, 1986), chapter 6, pp. 222±62; chapter 9, pp. 337±79.

16. W.K. Nicholson, `Elementary Linear Algebra with Applications'

(PWS Publishers, Boston, 1986), section 2.4.3, pp. 95±106.

Table 4. Steady state properties in the queues of the numerical

illustrations

Property Illustration 1; q = 0.573 Illustration 2; q = 0.628

L* 1.342 1.689
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Lq
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W q
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  interpreted as the expected number of the M1(II) and M2(II) species
à interpreted as the mean reaction time required for the formation of

the EAC
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